
DM@NLO is a numerical code to compute the annihilation crosssection of the neutralino in the Minimal Supersymmetric Standard Model at nexttoleading order in α_{s}. The package is designed to work with micrOMEGAs in order to evaluate the relic density of the neutralino including the corrections in QCD and SUSYQCD. An interface to DarkSUSY is under development. 
Currently, DM@NLO includes the following classes of processes:
 gaugino pairannihilation into quark pairs [1,2,3,6],
 gauginosquark coannihilation into a quark and a gauge or Higgs boson [4,7],
 squarkantisquark annihilation into electroweak final states [8].

All relevant corrections to these processes are included. Resummable higher order corrections to Yukawa couplings as well as Sommerfeld enhancement effects are also taken into account. Making use of the dipole subtraction method (for certain classes of processes) to combine the virtual and real emission corrections allows for efficient scanning over the MSSM parameter space. The calculation of the supersymmetric mass spectrum, either from a highscale scenario or at the electroweak scale, is performed by the spectrum generator SPheno. Ongoing work concerns the implementation of squarkantisquark annihilation into coloured final states. 
Using DM@NLO, it has been shown that the impact of the QCD and SUSYQCD corrections on the neutralino relic density can be larger than the current experimental uncertainty by the WMAP satellite [18]. Given the even more precise cosmological data delivered by the Planck satellite, radiative corrections to dark matter annihilation and relic density become even more important in the context of parameter space analysis and extraction of supersymmetric parameters from cosmological observations.

The obtained results have allowed to evaluate for the first time the theoretical scale uncertainty in the calculation of the neutralino relic density [9]. Moreover, certains results have been applied to the case of direct dark matter detection [10].

References 
[1] 
B. Herrmann, M. Klasen,
Phys. Rev. D76: 117704 (2007),
arXiv:0709.0043 [hepph]. 
[2] 
B. Herrmann, M. Klasen, K. Kovarik,
Phys. Rev. D79: 061701 (2009),
arXiv:0901.0481 [hepph]. 
[3] 
B. Herrmann, M. Klasen, K. Kovarik,
Phys. Rev. D80: 085025 (2009),
arXiv:0907.0030 [hepph] 
[4] 
B. Herrmann,
Proceedings of Identification of Dark Matter (2010),
arXiv:1011.6550 [hepph]. 
[5] 
J. Harz, B. Herrmann, M. Klasen, K. Kovarik, Q. Le Boulc'h,
Phys. Rev. D87: 054031 (2013),
arXiv:1212.5241 [hepph]. 
[6] 
B. Herrmann, M. Klasen, K. Kovarik, M. Meinecke, P. Steppeler,
Phys. Rev. D89: 114012 (2014),
arXiv:1404.2931 [hepph].
 
[7] 
J. Harz, B. Herrmann, M. Klasen, K. Kovarik,
Phys. Rev. D91: 034028 (2015),
arXiv:1409.2898 [hepph].

[8] 
J. Harz, B. Herrmann, M. Klasen, K. Kovarik, M. Meinecke,
Phys. Rev. D91: 034012 (2015),
arXiv:1410.8063 [hepph].

[9] 
J. Harz, B. Herrmann, M. Klasen, K. Kovarik, P. Steppeler,
Phys. Rev. D93: 114023 (2016),
arXiv:1602.08103 [hepph].

[10] 
M. Klasen, K. Kovarik, P. Steppeler,
Phys. Rev. D94: 095002 (2016),
arXiv:1607.06396 [hepph].

Last update: 16 january 2017 by B. Herrmann
