DM@NLO is hosted by Hepforge, IPPP Durham

DM@NLO is a numerical code to compute the annihilation cross-section of the neutralino in the Minimal Supersymmetric Standard Model at next-to-leading order in αs. The package is designed to work with micrOMEGAs in order to evaluate the relic density of the neutralino including the corrections in QCD and SUSY-QCD. An interface to DarkSUSY is under development.
Currently, DM@NLO includes the following classes of processes:
  • gaugino pair-annihilation into quark pairs [1,2,3,6],
  • gaugino-squark coannihilation into a quark and a gauge or Higgs boson [4,7],
  • squark-antisquark annihilation into electroweak final states [8].
All relevant corrections to these processes are included. Resummable higher order corrections to Yukawa couplings as well as Sommerfeld enhancement effects are also taken into account. Making use of the dipole subtraction method (for certain classes of processes) to combine the virtual and real emission corrections allows for efficient scanning over the MSSM parameter space. The calculation of the supersymmetric mass spectrum, either from a high-scale scenario or at the electroweak scale, is performed by the spectrum generator SPheno. Ongoing work concerns the implementation of squark-antisquark annihilation into coloured final states.
Using DM@NLO, it has been shown that the impact of the QCD and SUSY-QCD corrections on the neutralino relic density can be larger than the current experimental uncertainty by the WMAP satellite [1-8]. Given the even more precise cosmological data delivered by the Planck satellite, radiative corrections to dark matter annihilation and relic density become even more important in the context of parameter space analysis and extraction of supersymmetric parameters from cosmological observations.
The obtained results have allowed to evaluate for the first time the theoretical scale uncertainty in the calculation of the neutralino relic density [9]. Moreover, certains results have been applied to the case of direct dark matter detection [10].

References
[1]  B. Herrmann, M. Klasen, Phys. Rev. D76: 117704 (2007), arXiv:0709.0043 [hep-ph].
[2]  B. Herrmann, M. Klasen, K. Kovarik, Phys. Rev. D79: 061701 (2009), arXiv:0901.0481 [hep-ph].
[3]  B. Herrmann, M. Klasen, K. Kovarik, Phys. Rev. D80: 085025 (2009), arXiv:0907.0030 [hep-ph]
[4]  B. Herrmann, Proceedings of Identification of Dark Matter (2010), arXiv:1011.6550 [hep-ph].
[5]  J. Harz, B. Herrmann, M. Klasen, K. Kovarik, Q. Le Boulc'h, Phys. Rev. D87: 054031 (2013), arXiv:1212.5241 [hep-ph].
[6]  B. Herrmann, M. Klasen, K. Kovarik, M. Meinecke, P. Steppeler, Phys. Rev. D89: 114012 (2014), arXiv:1404.2931 [hep-ph].
[7]  J. Harz, B. Herrmann, M. Klasen, K. Kovarik, Phys. Rev. D91: 034028 (2015), arXiv:1409.2898 [hep-ph].
[8]  J. Harz, B. Herrmann, M. Klasen, K. Kovarik, M. Meinecke, Phys. Rev. D91: 034012 (2015), arXiv:1410.8063 [hep-ph].
[9]  J. Harz, B. Herrmann, M. Klasen, K. Kovarik, P. Steppeler, Phys. Rev. D93: 114023 (2016), arXiv:1602.08103 [hep-ph].
[10]  M. Klasen, K. Kovarik, P. Steppeler, Phys. Rev. D94: 095002 (2016), arXiv:1607.06396 [hep-ph].

Last update: 16 january 2017 by B. Herrmann